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Abstract. In this article, we develop Ramanujan’s theory of elliptic func-
tions to the cubic base using Jacobi’s theta functions. Our new approach
does not involve the theta series discovered by J. M. Borwein and P.
B. Borwein, Goursat’s transformation formulas for the hypergeometric
series, analogue of Gauss’ AGM and the theory of modular forms.
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1. Introduction

A well known identity of Jacobi [12, p. 90, (14)] states that if |q| < 1, then
∞∏

k=1

(
1 + q2k−1

)8
=

∞∏

k=1

(
1 − q2k−1

)8
+ 16q

∞∏

k=1

(
1 + q2k

)8
. (1.1)

Using Jacobi’s triple product identity (see [7, Theorem 3.2] or (2.4)), one can
show that (1.1) is equivalent to the identity

( ∞∑

m,n=−∞
qm2+n2

)2

=

( ∞∑

m,n=−∞
(−1)m+nqm2+n2

)2

+

( ∞∑

m,n=−∞
q(m+1/2)2+(n+1/2)2

)2

. (1.2)
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Around 1991, J.M. Borwein and P.B. Borwein [4] discovered a cubic
analogue of (1.2) given by
( ∞∑

m,n=−∞
qm2+mn+n2

)3

=

( ∞∑

m,n=−∞
ωm−nqm2+mn+n2

)3

+

( ∞∑

m,n=−∞
q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2

)3

(1.3)

where ω = e2πi/3. The three theta series in (1.3) are now known as Borweins’
theta series. The first proof of (1.3) is given by the Borweins [4]. For other
proofs of (1.3) and its generalizations, see D. Schultz [17], R. Chapman [10]
and J.M. Borwein, F.G. Garvan and M. Hirschhorn [6].

The Borweins theta series in (1.3) are usually denoted by a(q), b(q) and
c(q) respectively. However, in this article, we will reserve the letters a = a(τ),
b = b(τ) and c = c(τ) for functions which will appear naturally in our deriva-
tions of certain identities associated with Jacobi’s theta functions.

Around 1994, using Borweins’ theta series as their starting point, B.C.
Berndt, S. Bhargava and F.G. Garvan (see [3] and [2, Chapter 33]) succeeded in
developing Ramanujan’s theory of elliptic functions to the cubic base, a theory
that was briefly mentioned by Ramanujan in [15]. In their work, the following
transformation formula of Goursat [2, Corollary 2.4] plays an important role:

2F1

(
1
3
,
2
3
; 1; 1 −

(
1 − r

1 + 2r

)3
)

= (1 + 2r) 2F1

(
1
3
,
2
3
; 1; r3

)
, (1.4)

where

2F1 (c, d; e;u) =
∞∑

j=0

(c)j(d)j

(e)j

uj

j!
,

with

(�)n =
n∏

k=1

(� + k − 1).

In [2, p. 97], Berndt remarked that the Borweins deduced (1.4) in connec-
tion with their cubic analogue of the arithmetic–geometric mean [4] while his
approach with Bhargava and Garvan depended upon prior knowledge of the
identity and differential equations and that both approaches are not completely
satisfactory.

In this article, we present an approach to Ramanujan’s theory of elliptic
functions to the cubic base without reference to Goursat’s formula and cubic
analogue of the arithmetic–geometric mean.
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2. Important Facts About the Jacobi Theta Function ϑ1(u|τ )
The Jacobi theta function ϑ1(u|τ) is defined by

ϑ1(u|τ) = −i
∞∑

j=−∞
(−1)jq(j+1/2)2e(2j+1)iu, (2.1)

where q = eπiτ . It satisfies two basic transformation formulas

ϑ1(u + π|τ) = −ϑ1(u|τ) (2.2)

and

ϑ1(u + πτ |τ) = −q−1e−2iuϑ1(u|τ) (2.3)

which follows directly from the definition (2.1) of ϑ1(u|τ).
An identity associated with ϑ1(u|τ) known as the Jacobi triple product

identity expresses ϑ1(u|τ) as an infinite product as follows (see for example
[7, Theorem 3.2]):

ϑ1(u|τ) = 2q1/4 sin u

∞∏

k=1

(1 − q2k)(1 − q2ke2iu)(1 − q2ke−2iu). (2.4)

By applying logarithmic differentiation to (2.4), we get

ϑ′
1

ϑ1
(u|τ) = cot u + 4

∞∑

j=1

q2j

1 − q2j
sin 2ju, (2.5)

where we have used
f ′

f
(u) =

f ′(u)
f(u)

.

Expanding (2.5), we find that

ϑ′
1

ϑ1
(u|τ) =

1
u

+
∞∑

j=1

(−1)j 22j

(2j)!
B2jL2ju

2j−1, (2.6)

where

L2j = L2j(τ) = 1 − 4j

B2j

∞∑

�=1

�2j−1q2�

1 − q2�
(2.7)

with the Bernoulli numbers Bk defined by

1
e2it − 1

=
∞∑

k=0

Bk

k!
(2it)k−1.

We will also need the following transformation formulas which are conse-
quences of (2.2) and (2.3):

ϑ′
1

ϑ1
(u + π|τ) =

ϑ′
1

ϑ1
(u|τ) (2.8)
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and
ϑ′
1

ϑ1
(u + πτ |τ) =

ϑ′
1

ϑ1
(u|τ) − 2i. (2.9)

Lastly, we record the following identities which we will need in our subsequent
sections. These identities are consequences of (2.4):

ϑ′
1(0|τ) = 2q1/4

∞∏

k=1

(
1 − q2k

)3
(2.10)

ϑ1(π/3|τ) =
√

3q1/4
∞∏

k=1

(
1 − q6k

)
(2.11)

and

ϑ1(πτ |3τ) = iq−1/4
∞∏

k=1

(
1 − q2k

)
. (2.12)

3. Identities Involving L4(τ ) and L6(τ )

In this section, we establish the following identity:

Theorem 3.1. Let q = eπiτ with Im τ > 0 and
( ·

p

)
is the Legendre symbol.

Let

a = a(τ) = 1 + 6
∞∑

j=1

(
j

3

)
q2j

1 − q2j
(3.1)

and

b = b(τ) =
∞∏

k=1

(1 − q2k)3

1 − q6k
. (3.2)

Then
ϑ1′

ϑ1
(u + π/3|τ) − ϑ1′

ϑ1
(u − π/3|τ)

+
2√
3
b

ϑ2
1(u|τ)

ϑ1(u + π/3|τ)ϑ1(u − π/3|τ)
=

2√
3
a,

(3.3)

We observe that in Theorem 3.1, our functions a(τ) and b(τ) appear
naturally as coefficients in the identity (3.3).

Proof. From (2.8) and (2.9), we deduce that

ϑ′
1

ϑ1
(u + π/3|τ) − ϑ′

1

ϑ1
(u − π/3|τ)
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is an elliptic function with periods π and πτ having simple poles at u = π/3
and u = −π/3. The function

ϑ2
1(u|τ)

ϑ1(u + π/3|τ)ϑ1(u − π/3|τ)

is also an elliptic function with periods π and πτ having simple poles at u = π/3
and u = −π/3. Therefore, there exist constants ξ and χ independent of u such
that

ϑ′
1

ϑ1
(u + π/3|τ) − ϑ′

1

ϑ1
(u − π/3|τ) + ξ

ϑ2
1(u|τ)

ϑ1(u + π/3|τ)ϑ1(u − π/3|τ)
= χ.

(3.4)

Setting u = 0 implies that

χ =
ϑ′
1

ϑ1
(π/3|τ) − ϑ′

1

ϑ1
(−π/3|τ) =

2√
3
a.

Next, we rewrite (3.4) as

ϑ′
1(u + π/3|τ)ϑ1(u − π/3|τ) − ϑ′

1(u − π/3|τ)ϑ1(u + π/3|τ) + ξϑ2
1(u|τ)

=
2√
3
aϑ1(u + π/3|τ)ϑ1(u − π/3|τ). (3.5)

Letting u = π/3 in (3.5) and using (2.10) and (2.11), we deduce that

ξ =
ϑ′
1(0|τ)

ϑ1(2π/3)
=

2√
3
b,

where b is given by (3.2). This completes the proof of (3.3). �

Next, we establish the following identity

Theorem 3.2. Let q = eπiτ with Im τ > 0. Then

ϑ3
1(z|τ) − ϑ3

1(z + π/3|τ) − ϑ3
1(z − π/3|τ)

= 3
a

b
ϑ1(z|τ)ϑ1(z + π/3|τ)ϑ1(z − π/3|τ). (3.6)

Identity (3.6) can be found in Z.G. Liu’s article [13, (5.12)]. We give a
proof of this identity here. We now use (3.3) to give a proof of (3.6).

Proof. Rewrite (3.3) as

ϑ′
1

ϑ1
(u + π/3|τ) − ϑ′

1

ϑ1
(u − π/3|τ)

+
2√
3
b

ϑ3
1(u|τ)

ϑ1(u|τ)ϑ1(u + π/3|τ)ϑ1(u − π/3|τ)
=

2√
3
a. (3.7)
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By replacing u by u−π/3 and u−2π/3 in (3.7) and using (2.8) and (2.9),
we deduce that

ϑ′
1

ϑ1
(u + π/3|τ) − ϑ′

1

ϑ1
(u − π/3|τ)

− 2√
3
b

ϑ3
1(u − π/3|τ)

ϑ1(u|τ)ϑ1(u + π/3|τ)ϑ1(u − π/3|τ)
=

2√
3
a (3.8)

and
ϑ′
1

ϑ1
(u − π/3|τ) − ϑ′

1

ϑ1
(u|τ)

− 2√
3
b

ϑ3
1(u + π/3|τ)

ϑ1(u|τ)ϑ1(u + π/3|τ)ϑ1(u − π/3|τ)
=

2√
3
a. (3.9)

Adding (3.7), (3.8) and (3.9) and simplifying, we deduce that
2√
3
b
(
ϑ3
1(u|τ) − ϑ3

1(u − π/3|τ) − ϑ3
1(u + π/3|τ)

)

=
6√
3
aϑ1(u|τ)ϑ1(u + π/3|τ)ϑ1(u − π/3|τ),

and the proof of (3.6) is complete.
�

Let

R := R(u|τ) =
ϑ1(u|τ)

ϑ1(u − π/3|τ)
(3.10)

and

S := S(u|τ) = −ϑ1(u + π/3|τ)
ϑ1(u − π/3|τ)

. (3.11)

We may then rewrite (3.6) as

R3 + S3 + 3
a

b
RS = 1. (3.12)

Differentiating both sides of (3.12) with respect to u, we deduce that

R′ (aS + bR2
)

= −S′ (aR + bS2
)
. (3.13)

Now, from (3.3), we find that

S′

S
=

ϑ′
1

ϑ1
(u + π/3|τ) − ϑ′

1

ϑ1
(u − π/3|τ) =

2√
3
a +

2√
3
b
R2

S
,

which implies that

S′ =
2√
3

(
aS + bR2

)
. (3.14)

Substituting (3.14) into (3.13), we deduce that

R′ = − 2√
3

(
aR + bS2

)
. (3.15)
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Next let

R =
∞∑

j=0

rju
j

and

S =
∞∑

j=0

sju
j .

Note that r0 = 0 and s0 = 1 and (3.15) and (3.14) imply that for j ≥ 1,

rj = − 2√
3j

(
arj−1 + b

j−1∑

�=0

s�sj−1−�

)

and

sj =
2√
3j

(
asj−1 + b

j−1∑

�=0

r�sr−1−�

)
.

These recurrences allow us to determine the series expansion of R and S. For
example, the series expansion of R begins by

R(u|τ) = −2
3

√
3bu − 2

3
abu2 +

(
−4

9

√
3a2b

)
u3 +

(
−10

27
a3b − 8

27
b4

)
u4

+
(

−112
405

√
3ab4 − 44

405

√
3ba4

)
u5 +

(
−224

405
a2b4 − 28

405
ba5

)
u6

+
(

− 256
5103

√
3b7 − 7232

25515

√
3a3b4 − 344

25515

√
3a6b

)
u7 + · · · , (3.16)

where a = a(τ) and b = b(τ). From (3.16), we derive the series expansion for
1/R3, which is

1
R3

= −3
√

3
8b3

1
u3

+
9
8

a

b3
1
u2

+
(

1
2

− 9
8

a3

b3

)

+

(
9
40

a4
√

3
b3

−
√

3
5

a

)
u +

(
27
40

a5

b3
− 3

5
a2

)
u2

+

(
2
√

3
7

a3 − 3
√

3a6

14b3
− 4

√
3

63
b3

)
u3 + · · · (3.17)

Now, 1/R3 is an elliptic function with pole of order 3 at u = 0. This
implies that

1
R3

= −3
√

3
16b3

(
ϑ′
1

ϑ1
(u|τ)

)′′
+

9
8

a

b3

(
ϑ′
1

ϑ1
(u|τ)

)′
+

9
8

(
a

b3
L2 − a3

b3

)
+

1
2
,

(3.18)

where we have used (2.6).
Comparing the coefficients of u2k in (3.18) with the use of (2.6) and

(3.17), we arrive at the following identities:
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Theorem 3.3. Let L2j, a and b be the functions defined in (2.7), (3.1) and
(3.2) respectively. Then

L4(τ) = a4

(
9 − 8

b3

a3

)
(3.19)

and

L6(τ) = a6

(
−27 + 36

b3

a3
− 8

b6

a6

)
. (3.20)

4. Ramanujan’s Differential Equations and Their Consequences

In [16], S. Ramanujan derived three differential equations involving L2(τ), L4(τ)
and L6(τ). These are given by

x
dL2(τ)

dx
=

L2
2(τ) − L4(τ)

12
(4.1)

x
dL4(τ)

dx
=

L2(τ)L4(τ) − L6(τ)
3

(4.2)

x
dL6(τ)

dx
=

L2(τ)L6(τ) − L2
4(τ)

2
, (4.3)

where x = q2 = e2πiτ . There are two important identities that arise from (4.2)
and (4.3). These are

3L2
4(τ)x

dL4(τ)
dx

− 2L6(τ)x
dL6(τ)

dx
= L2(τ)

(
L3
4(τ) − L2

6(τ)
)

(4.4)

and

3L6(τ)x
dL4(τ)

dx
− 2L4(τ)

dL6(τ)
dx

= L3
4(τ) − L2

6(τ). (4.5)

Ramanujan used (4.4) (see [16, (44)]) to deduce that

Δ(τ) =
1

1728
(
L3
4(τ) − L2

6(τ)
)
, (4.6)

where

Δ(τ) = e2πiτ
∞∏

k=1

(1 − e2kπiτ )24. (4.7)

By (3.19) and (3.20), we find that the right hand side of (4.6) is

1
1728

(
L3
4(τ) − L2

6(τ)
)

=
1
33

b9(a3 − b3). (4.8)

Next, if

c = c(τ) = 3q2/3
∞∏

k=1

(1 − q6k)3

1 − q2k
, (4.9)
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then

c3b9 = 33Δ(τ). (4.10)

Combining (4.6), (4.8) and (4.10), we deduce

Theorem 4.1. Let a, b and c be functions defined in (3.1), (3.2) and (4.9).
Then

a3 = b3 + c3, (4.11)

or more explicitly,
⎛

⎝1 + 6
∞∑

j=1

(
j

3

)
q2j

1 − q2j

⎞

⎠
3

=

( ∞∏

k=1

(1 − q2k)3

1 − q6k

)3

+27q2

( ∞∏

k=1

(1 − q6k)3

1 − q2k

)3

. (4.12)

Identity (4.12) is equivalent to (1.3) using the identities established by
the Borweins and Garvan [5].

Using (4.11), we now rewrite (3.19) and (3.20) as

Theorem 4.2. Let L2j, a, b and c be functions defined by (2.7), (3.1), (3.2)
and (4.9) respectively. Then

L4(τ) = a4 (1 + 8α) (4.13)

and

L6(τ) = a6
(
1 − 20α − 8α2

)
, (4.14)

where

α = α(τ) =
c3(τ)
a3(τ)

. (4.15)

Differentiating both sides of (4.13) and (4.14) with respect to x = q2, we
find that

x
dL4(τ)

dx
= 4a3x

da

dx
(1 + 8α) + 8a4x

dα

dx
(4.16)

and

x
dL6(τ)

dx
= 6a5x

da

dx

(
1 − 20α − 8α2

)
+ a6 (−20 − 16α) x

dα

dx
. (4.17)

Using (4.13), (4.13), (4.16), (4.17) in (4.5), we deduce that

x
dα

dx
= a2α (1 − α) . (4.18)

Next, by using (4.13), (4.14), (4.16),(4.17) and (4.18), we deduce from (4.4)
that

L2(τ) = 12aα(1 − α)
da

dα
+ a2(1 − 4α). (4.19)
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Using (4.1), (4.19) and (4.18), we conclude that

α(1 − α)
d2a

dα2
+ (1 − 2α)

da

dα
=

2
9
a.

This implies that

Theorem 4.3. Let a be defined as in (3.1). Then

a = 2F1

(
1
3
,
2
3
; 1;α

)
. (4.20)

The proof of Theorem 4.3 sketched above can be found in [8].

5. Identities Associated with L4(3τ ) and L6(3τ )

In this section, we establish the parametrizations of L4(3τ) and L6(3τ) in
terms of a and c. We will need the following analogue of (3.3):

Theorem 5.1. Let q = eπiτ with Im τ > 0 and a be defined as in (3.1). Then
ϑ′
1

ϑ1
(u + πτ |3τ) − ϑ′

1

ϑ1
(u − πτ |3τ) +

2i

3
(2 + a)

= 2i
ϑ2
1(u|3τ)

ϑ1(u + πτ |3τ)ϑ1(u − πτ |3τ)

∞∏

k=1

(1 − q6k)3

1 − q2k
. (5.1)

Proof. The function
ϑ′
1

ϑ1
(u + πτ |3τ) − ϑ′

1

ϑ1
(u − πτ |3τ)

is elliptic with periods π and 3πτ and has simple poles at πτ and −πτ . The
function

ϑ2
1(u|3τ)

ϑ1(u + πτ |3τ)ϑ1(u − πτ |3τ)
is also elliptic with periods π and 3πτ and simple poles at πτ and −πτ .
Therefore,

ϑ′
1

ϑ1
(u + πτ |3τ) − ϑ′

1

ϑ1
(u − πτ |3τ) + κ

ϑ2
1(u|3τ)

ϑ1(u + πτ |3τ)ϑ1(u − πτ |3τ)
= ν

(5.2)

for some κ and ν which are independent of u. Let u = 0 in (5.2). We find,
using (2.5), that

ν = 2
ϑ′
1

ϑ1
(πτ |3τ) = −2i

3
(a + 2) .

Therefore, we may rewrite (5.2) as

ϑ′
1(u + πτ |3τ)ϑ1(u − πτ |3τ) − ϑ′

1(u − πτ |3τ)ϑ1(u + πτ |3τ) + κϑ2
1(u|3τ)

= −2i

3
(a + 2)ϑ1(u + πτ |3τ)ϑ1(u − πτ |3τ). (5.3)
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Letting u = πτ in (5.3) and using (2.10) and (2.12), we deduce that

κ =
ϑ′
1(0|3τ)ϑ1(2πτ |3τ)

ϑ2
1(πτ |3τ)

= −2i

∞∏

k=1

(1 − q6k)3

1 − q2k
.

�

The following identity, which is similar to (3.6), follows from (5.1) using
the argument as in the proof of (3.6).

Theorem 5.2. Let q = eπiτ , with Im τ > 0. Then

ϑ3
1(u|3τ) − qe2iuϑ3

1(u + πτ |3τ) − qe−2iuϑ3
1(u − πτ |3τ)

= 3
a

c
q2/3ϑ1(u|3τ)ϑ1(u + πτ |3τ)ϑ1(u − πτ |3τ), (5.4)

where c is defined in (4.9).

Identity (5.4) can be found in Liu’s article [13, (1.13)], after applying [13,
(5.1)]. The identity can also be found in Ramanujan’s notebooks [1, p. 142,
Entry 3].

Let

U = U(u|τ) = q−1/3e2iu/3 ϑ1(u|3τ)
ϑ1(u − πτ |3τ)

(5.5)

and

V = V (u|τ) = −e4iu/3 ϑ1(u + πτ |3τ)
ϑ1(u − πτ |3τ)

. (5.6)

By using U and V , we may rewrite (5.4) and (5.1) as

U3 + V 3 + 3
a

c
UV = 1 (5.7)

and

dV

du
= −2i

3
(
aV + cU2

)
. (5.8)

Using (5.7), we deduce that

U ′ (cU2 + aV
)

= −V ′(cV 2 + aU). (5.9)

Using (5.8), we deduce from (5.9) that

dU

du
=

2i

3
(
aU + cV 2

)
. (5.10)



   81 Page 12 of 20 H. H. Chan and Z.-G. Liu Results Math

Using (5.10) and (5.8), we find that the first few terms of the power series
expansion of U about 0 is given by

U =
2ic

3
u +

2
9
cau2 − 4

27
ica2u3 +

(
− 10

243
ca3 − 8

243
c4

)
u4

+
(

44
3645

ica4 +
112
3645

ic4a

)
u5 +

(
224

10935
c4a2 +

28
10935

ca5

)
u6

+
(

− 256
137781

ic7 − 7232
688905

ic4a3 − 344
688905

ica6

)
u7 + · · · . (5.11)

Using (5.11), we deduce that

1
U3

=
27i

8c3
1
u3

− 27a

8c3
1
u2

+
(

1
2

− 9
8

a3

c3

)

+
(

− 9i

40
a4

c3
+

ai

5

)
u +

(
− 9

40
a5

c3
+

a2

5

)
u2

+
(

− ia6

14c3
+

2i

21
ia3 − 4

189
ic3

)
u3 + · · · (5.12)

Now, 1/U3 is an elliptic function with pole of order 3 at u = 0, with periods
π and 3πτ . This implies that

1
U3

= − 27i

16c3

(
ϑ′
1

ϑ
(u|3τ)

)′′
+

27
8

a

c3

(
ϑ′
1

ϑ
(u|3τ)

)′

+
9
8

(
a

c3
L2 − a3

c3

)
+

1
2
. (5.13)

Comparing the coefficients of u2k in (5.13) with the use of (2.6) and (5.12),
we conclude that

Theorem 5.3. Let L2j, a and c be functions defined by (2.7), (3.1) and (4.9).
Then

L4(3τ) = a4

(
1 − 8

9
c3

a3

)
(5.14)

and

L6(3τ) = a6

(
1 − 4

3
c3

a3
+

8
27

c6

a6

)
. (5.15)

We end this section by observing that if we carry out the procedures
illustrated in the proof of Theorem 4.3 using (3.19) and (3.20), we get

a = 2F1

(
1
3
,
2
3
; 1; 1 − b3

a3

)
. (5.16)

If we carry out the same procedures with (5.14) and (5.15), we get

a = 2F1

(
1
3
,
2
3
; 1;

c3

a3

)
. (5.17)



Ramanujan’s Theory of Elliptic Functions Page 13 of 20    81 

Identities (5.16) and (5.17) then imply that

c3

a3
= 1 − b3

a3
,

giving us another proof of (4.11).

6. The Triplication Formula for α(τ )

From (4.7), (3.2), (4.9), we find, using (4.11) and (4.15), that

Δ(τ) =
1
33

c3b9 =
a12(τ)

33
α(τ)(1 − α(τ))3 (6.1)

and

Δ(3τ) =
1
39

c9b3 =
a12(τ)

39
α3(τ)(1 − α(τ)). (6.2)

Replacing τ by 3τ in (6.1), we find that

Δ(3τ) =
1
33

=
a12(3τ)

33
β(τ)(1 − β(τ))3, (6.3)

where

β = β(τ) = α(3τ). (6.4)

Equating (6.2) and (6.3), we deduce that

a12(τ)α3(1 − α) = 36a12(3τ)β(1 − β)3. (6.5)

We also have two expressions for L4(3τ), one from replacing τ by 3τ in (3.19)
and the other from (5.14) and this implies that

a12(τ)
(

1 − 8
9
α

)3

= a12(3τ) (1 + 8β)3 . (6.6)

Eliminating a(τ) and a(3τ) from (6.5) and (6.6), we conclude that

α3(1 − α)(1 + 8β)3 = (9 − 8α)3β(1 − β)3. (6.7)

Letting s = (1 − α)1/3 and t = β1/3 in (6.7), we obtain

(1 − s3)s(1 + 8t3) = (1 − t3)t(1 + 8s3),

which implies

(s − t)(s + 2st − 1 + t)(s2 − 2s2t + 4s2t2 − 2st2 + 4st + s + t2 + t + 1) = 0.

From the q-expansion of s and t, we obtain

t =
1 − s

1 + 2s
and s =

1 − t

1 + 2t
.

In other words, we have
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Theorem 6.1. Let α and β be defined as in (4.15) and (6.4). Then

β =
(

1 − (1 − α)1/3

1 + 2(1 − α)1/3

)3

(6.8)

and

α = 1 −
(

1 − β1/3

1 + 2β1/3

)3

. (6.9)

Substituting (6.8) and (6.9) into (6.6), we obtain

a(τ) =
3

1 + 2(1 − α)1/3
a(3τ) (6.10)

and

a(τ) = (1 + 2β1/3)a(3τ). (6.11)

Next, note that

a(τ) = 2F1

(
1
3
,
2
3
; 1;α

)
= 2F1

(
1
3
,
2
3
; 1; 1 − s3

)

and

a(3τ) = 2F1

(
1
3
,
2
3
; 1;β

)
= 2F1

(
1
3
,
2
3
; 1; t3

)
.

We can therefore translate (6.10) and (6.11) to the following transformation

formulas for 2F1

(
1
3
,
2
3
; 1; z

)
:

2F1

(
1
3
,
2
3
; 1; 1 − s3

)
=

3
1 + 2s 2F1

(
1
3
,
2
3
; 1;

(
1 − s

1 + 2s

)3
)

(6.12)

and

2F1

(
1
3
,
2
3
; 1; 1 −

(
1 − t

1 + 2t

)3
)

= (1 + 2t) 2F1

(
1
3
,
2
3
; 1; t3

)
. (6.13)

By replacing s and t in (6.12) and (6.13) by a common variable r, we obtain

Theorem 6.2. Let r be such that 0 < |r| < 1. Then

2F1

(
1
3
,
2
3
; 1; 1 − r3

)
=

3
1 + 2r 2F1

(
1
3
,
2
3
; 1;

(
1 − r

1 + 2r

)3
)

(6.14)

and

2F1

(
1
3
,
2
3
; 1; r3

)
=

1
1 + 2r

2F1

(
1
3
,
2
3
; 1; 1 −

(
1 − r

1 + 2r

)3
)

. (6.15)

We observe that (6.15) is (1.4) mentioned in Section 1.
From (6.10) and (6.11), we deduce the following identities:
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Theorem 6.3. Let a, b and c be functions defined by (3.1), (3.2) and (4.9).
Then

c(3τ) =
a(τ) − a(3τ)

2
, (6.16)

b(τ) =
3a(3τ) − a(τ)

2
, (6.17)

a(τ) = 3c(3τ) + b(τ), (6.18)

and

a(3τ) = b(τ) + c(3τ). (6.19)

Identities (6.16) and (6.17) allow us to express c(τ) and b(τ) in terms of
Lambert series, for example,

b(τ) = 1 + 9
∞∑

j=1

(n

3

) q6k

1 − q6k
− 3

∞∑

j=1

(n

3

) q2k

1 − q2k
.

Identities (6.18) and (6.19) yield two expressions of a(τ) in terms of infi-
nite products, namely,

a(τ) =
∞∏

k=1

(1 − q2k)3

1 − q6k
+ 9q2

∞∏

k=1

(1 − q18k)3

1 − q6k
(6.20)

=
∞∏

k=1

(1 − q2k/3)3

1 − q2k
+ 3q2/3

∞∏

k=1

(1 − q6k)3

1 − q2k
. (6.21)

Using (4.11), (6.20), (6.21) and the definitions of b and c, we deduce that
( ∞∏

k=1

(1 − q2k)3

1 − q6k
+ 9q2

∞∏

k=1

(1 − q18k)3

1 − q6k

)3

=

( ∞∏

k=1

(1 − q2k)3

(1 − q6k)

)3

+ 27q2

( ∞∏

k=1

(1 − q6k)3

(1 − q2k)

)3

(6.22)

and
( ∞∏

k=1

(1 − q2k/3)3

1 − q2k
+ 3q2/3

∞∏

k=1

(1 − q6k)3

1 − q2k

)3

=

( ∞∏

k=1

(1 − q2k)3

(1 − q6k)

)3

+ 27q2

( ∞∏

k=1

(1 − q6k)3

(1 − q2k)

)3

. (6.23)

Identities (6.22) and (6.23), which are equivalent to (1.3) and (4.12), are ana-
logues of (1.1).
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Remark 6.1. For those who are familiar with the theory of modular forms,
(6.23) can be written as

(
1 +

η3(9τ)
η3(τ)

)3

= 1 + 27
η12(3τ)
η12(τ)

,

which is a relation between the Hauptmodul for Γ0(9) and the Hauptmodul
for Γ0(3).

7. Transformation for a(τ )

Let the Dedekind η function be defined by

η(τ) = eπiτ/12
∞∏

k=1

(1 − e2πikτ ). (7.1)

The function Δ(τ) defined in (4.7) is

Δ(τ) = η24(τ). (7.2)

Using (7.1), we rewrite (6.20) and (6.21) as

a(τ) =
η3(τ)
η(3τ)

+ 9
η3(9τ)
η(3τ)

(7.3)

=
η3(τ/3)

η(τ)
+ 3

η3(3τ)
η(τ)

. (7.4)

It is known that

Δ(−1/τ) = τ12Δ(τ). (7.5)

For a proof of (7.5), see [18] or [7, Theorem 6.10]. Using (7.5) and (7.2), we
deduce that

η(−1/τ) =
√−iτη(τ). (7.6)

By (7.3), (7.4) and (7.6), we find that

a(−1/(
√

3τ)) =
η3(−1/(3

√
3τ))

η(−1/(
√

3τ))
+ 3

η3(−3/(
√

3τ))
η(−1/(

√
3τ))

= −iτ

(
9
η3(9τ/

√
3)

η(3τ/
√

3)
+

η3(τ/
√

3)
η(3τ/

√
3)

)

= −iτa(τ/
√

3). (7.7)

By (5.16) and (7.7), we get

τ = i
2F1

(
1/3, 2/3; 1; 1 − α(τ/

√
3)

)

2F1

(
1/3, 2/3; 1;α(τ/

√
3)

) . (7.8)
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Observe that when α(τ/
√

3) = 1/2, then (7.8) implies that τ = i. This
yields the identity

α(i/
√

3) =
1
2
.

Remark 7.1. 1. It is possible to derive (5.14) and (5.15) by using (7.6) and
the transformation formulas for L4(τ) and L6(τ).

2. The transformation formula (7.7) for a(τ) can also be derived from (4.11)
after applying (7.6) to c(τ) and b(τ). More precisely,

b

(
− 1√

3τ

)
= −iτc

(
τ√
3

)

implies that

a3

(
− 1√

3τ

)
= (−iτ)3 a3

(
τ√
3

)
,

which in turn implies (7.7).

8. Concluding Remarks

We have shown in this article that Ramanujan’s theory of elliptic functions to
the cubic base can be developed using identities associated with Jacobi’s theta
function ϑ1(u|τ). In our approach, a(τ) is defined in terms of Lambert series
while b(τ) and c(τ) are infinite products and they arise naturally as coefficients
of relations among certain elliptic functions.

Except for the paragraph before [4, Theorem 2.3] where a(τ), b(τ) and
c(τ) are defined in terms of Lambert series, the functions a(τ), b(τ) and c(τ)
are often defined in the literature by

a(τ) =
∞∑

m,n=−∞
xm2+mn+n2

,

b(τ) =
∞∑

m,n=−∞
ωm−nxm2+mn+n2

and

c(τ) =
∞∑

m,n=−∞
x(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 ,

where x = q2 = e2πiτ . The derivation of a(τ), b(τ) and c(τ) in terms of infinite
products from its series version are then given by the Borweins and Garvan
[5, Lemma 2.1, Proposition 2.2] (see [9] for the proof of the representation of
b(τ) using the idea of [5]) and Z.G. Liu [13, Section 4].

The advantages of using Borweins’ theta series as the starting point of
Ramanujan’s theory of elliptic functions to the cubic base is that the proofs
of the identities (6.16)–(6.19) are simpler using the series representations of
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a(τ), b(τ) and c(τ). The identity (1.3) is then a consequence of (6.16)–(6.19)
(see [5, Theorem 2.3]).

The disadvantages of using Borweins’ theta series, on the other hand, is
that it is harder to derive identities such as (4.13), (4.14), (6.8) and (5.16). For
example, the proof of (5.16) by the Borweins [4] relied on a method similar to
Gauss’ work on the Arithmetic–Geometric Mean. A second proof of (5.16) was
later given by B.C. Berndt, S.Bhargava and F.G. Garvan [3, Lemma 2.6] where
the identity (6.13) (see [3, Corollary 2.4]),which is a special case of E. Goursat’s
transformation formula of the hypergeometric function (see [3, Theorem 2.3]),
is used. In this article, we show that the transformation formula (6.13) is not
required in the derivation of (5.16). Instead, (6.13) is a consequence of our
work.

Finally, we say a few words about our functions R,S, U, V which are
defined respectively in (3.10), (3.11), (5.5) and (5.6). There are two reasons
why we believe that these functions are important. The first is that functions
such as R and S, which can also be found in the master’s thesis of S.T. Ng [14,
Section 5.2], satisfy (3.12) and this relation is very similar to the relation [11,
p. 171, (2)] satisfied by the Dixon cubic elliptic functions sm(u) and cm(u). We
stress here that our functions R,S, U, V are not the Dixon functions. Another
motivation which gives rise to these functions is Jacobi’s elliptic function sn(u)
(see [7, (7.2)]) which can be expressed in terms of

J(u) = −iq−1/2eiu ϑ1(u|2τ)
ϑ1(u − πτ |2τ)

.

Note the similarity between J and U defined in (5.5). We believe that with
the discoveries of R,S, U, V , simpler proofs of some identities involving Jacobi’s
theta functions and Borweins’ theta functions can probably be found.
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